骄才站 >活动方案

有理数的乘法的教案6篇

一份详尽的教案能够引导教师清晰地传达知识,确保学生理解每一个重点,通过反复修改教案,教师可以不断完善教学方法,提升自身的专业素养,骄才站小编今天就为您带来了有理数的乘法的教案6篇,相信一定会对你有所帮助。

有理数的乘法的教案6篇

有理数的乘法的教案篇1

【教学目标】

1.熟练有理数乘法法则;

2.探索运用乘法运算律简化运算.

【对话探索设计】

?探索1

你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

?阅读理解

乘法交换律和结合律(见p40)

?探索2

下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?

(1)252004 (2) - 1999

?探索3

运用运算律真的能节省时间吗?分两个大组,比一比:

计算(-198)

?练习1

运用乘法交换律和结合律简化运算:

(1)1999125 (2) -1097

?探索4

1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

2.如右图,你会用两种方法求长方形abcd的面积吗?

?例题学习

p41.例5

?作业

p41.练习

?补充作业

1.计算(注意运用分配律简化运算):

(1)-6(100-); (2)(-12).

(2)2(-3)4(-5)(-6)789(-10);

(3) 2(-3)4(-5)(-6)0789(-10);

4.下列各式的积(幂)是正的还是负的?为什么?

(1)(-3)(-3)(-3)(-3)(-3).

5.运用乘法交换律和结合律简化运算:

(1)-98(-0.6); (2)-1999(-)()

【补充练习】

1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的.气温是多少?

2.运用分配律化简下列的式子:

(1)例3x+9x+x (2)13x-20x+5x;

=(3+9+1)x

=13x;

(3)12-9 (4)-z-7z-8z.

有理数的乘法的教案篇2

目标:

1、知识与技能

使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

2、过程与方法

经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

重点、难点:

1、重点:有理数乘法法则。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

过程:

一、创设情景,导入新

1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的马路上,取一点o,以向东的路程为正,则向西的路程为负,如果小玫从点o出发,以5千米的向西行走,那么经过3小时,她走了多远?

二、合作交流,解读探究

1、小学学过的乘法的'意义是什么?

乘法的分配律:a×(b+c)=a×b+a×c

如果两个数的和为0,那么这两个数互为相反数。

2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)

3、学生活动:计算3×(-5)+3×5,注意运用简便运算

通过计算表明3×(-5)与3×5互为相反数,从而有

3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。

在学生猜测、归纳、交流的过程中及时引导、肯定

两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘,积仍为0

(板书)有理数乘法法则:

三、应用迁移,巩固提高

1、计算

(-5)×(-4)2×(-3.5)×(-0.75)×0

(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

2、计算下列各题

①(-4)×5×(-0.25)② ×()×(-2)

③ ×()×0×()

指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

学生小结后,教师归纳:

几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

练习:本p31练习

四、总结反思(学生先小结)

1、有理数乘法法则

2、有理数乘法的一般步骤是:

(1)确定积的符号;(2)把绝对值相乘。

五、作业:p39习题1.5 a组1、2

有理数的乘法的教案篇3

教学目标

1.知识与技能

①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.

②会进行有理数的乘法运算.

2.过程与方法

通过对问题的变式探索,培养观察、分析、抽象的能力.

3.情感、态度与价值观

通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.

教学重点难点

重点:能按有理数乘法法则进行有理数乘法运算.

难点:含有负因数的乘法.

教与学互动设计

(一)创设情境,导入新课

做一做 出示一组算式,请同学们用计算器计算并找出它们的规律.

例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________

(3)(-5)(+3)=________;(4)(-5)(-3)=________

例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________

(3)(-6)(+4)=________;(4)(-6)(-4)=________

(二)合作交流,解读探究

想一想 你们发现积的`符号与因数的符号之间的关系如何?

学生活动:计算、讨论

总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.

两数相乘,同号得正,异号得负.

想一想 两数相乘,积的绝对值是怎么得到的呢?

学生:是两因数的绝对值的积.

有理数的乘法的教案篇4

2.5有理数的减法

题目

有理数的减法

课时1

学校教者

年级七年

学科数学

设计来源

自我设计

教学时间

教学目标

1、理解有理数减法法则,能熟练进行减法运算

2、会将减法转化为加法,进行加减混合运算,体会化归思想

重点

有理数的减法法则的理解,将有理数减法运算转化为加法运算

难点

有理数的减法法则的理解,将有理数减法运算转化为加法运算

教学方法

讲授教学过程

一、情境引入:

1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)

2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?

探索新知:

(一)有理数的减法法则的探索

1.我们不妨看一个简单的问题:(-8)-(-3)=?

也就是求一个数“?”,使(?)+(-3)=-8

根据有理数加法运算,有(-5)+(-3)= -8

所以(-8)-(-3)= -5 ①

2.这样做减法太繁了,让我们再想一想有其他方法吗?

试一试

做一个填空:(-8)+()= -5

容易得到(-8)+(+3)= -5 ②

思考:比较①、②两式,我们有什么发现吗?

3、验证:

(1)如果某天a地气温是3℃,b地气温是-5℃,a地比b地气温高多少?

3-(-5)=3+;

(2)如果某天a地气温是-3℃,b地气温是-5℃,a地比b地气温高多少?

(-3)-(-5)=(-3)+;

(2)如果某天a地气温是-3℃,b地气温是5℃,a地比b地气温高多少?

(-3)-5=(-3)+;

(二)有理数的减法法则归纳

1.说一说:两个有理数减法有多少种不同的情形?

2.议一议:在各种情形下,如何进行有理数的减法计算?

3.试一试:你能归纳出有理数的减法法则吗?

由此可推出如下有理数减法法则:

减去一个数,等于加上这个数的相反数。

字母表示:

由此可见,有理数的减法运算可以转化为加法运算。

?思考】:两个有理数相减,差一定比被减数小吗?

说明:(1)被减数可以小于减数。如:1-5;

(2)差可以大于被减数,如:(+3)–(-2);

(3)有理数相减,差仍为有理数;

(4)大数减去小数,差为正数;小数减大数,差为负数;

(三)问题:

问题1.计算:

①15-(-7)②(-8.5)-(-1.5)③ 0-(-22)

④(+2)-(+8)⑤(-4)-16 ⑥

问题2.(1)-13.75比少多少??

(2)从-1中减去-与-的和,差是多少?

(四)课堂反馈:

1、求出数轴上两点之间的距离:

(1)表示数10的点与表示数4的点;

(2)表示数2的点与表示数-4的点;

(3)表示数-1的点与表示数-6的点。

归纳总结:

1.有理数减法法则2.有理数减法运算实质是一个转化过程

达标测评

【知识巩固】

1.下列说法中正确的是( )

a减去一个数,等于加上这个数。 b零减去一个数,仍得这个数

c两个相反数相减是零。 d在有理数减法中,被减数不一定比减数或差大

2.下列说法中正确的是()

a两数之差一定小于被减数

b减去一个负数,差一定大于被减数

c减去一个正数,差不一定小于被减数

d零减去任何数,差都是负数

3.若两个数的差不为0的是正数,则一定是()

a被减数与减数均为正数,且被减数大于减数

b被减数与减数均为负数,且减数的绝对值大

c被减数为正数,减数为负数

4.下列计算中正确的是()

a(—3)-(—3)= —6 b 0-(—5)=5

c(—10)-(+7)= —3 d | 6-4 |= —(6-4)

5.(1)(—2)+________=5;(—5)-________=2

(2)0-4-(—5)-(—6)=___________

(3)月球表面的温度中午是1010c,半夜是-13oc,则中午的`温度比半夜高____

(4)已知一个数加—3.6和为—0.36,则这个数为_____________

(5)已知b ,则a,a-b,a+b从大到小排列________________

(6)0减去a的相反数的差为_______________

(7)已知| a |=3,| b |=4,且a,则a-b的值为_________

6.计算

(1)(—2)-(—5)(2)(—9.8)-(+6)

(3)4.8-(—2.7)(4)(—0.5)-(+)

(5)(—6)-(—6)(6)(3-9)-(21-3)

(7)| —1-(—2)|-(—1)

(8)(—3)-(—1)-(—1.75)-(—2)

7.已知a=8,b=-5,c=-3,求下列各式的值:

(1)a-b-c;(2)a-(c+b)

8.若a0,则a,a+b, a-b, b中最大的是()a. a b. a+b c. a-b d. b

9.请你编写符合算式(-20)-8的实际生活问题。

教与学反思

你有什么收获?

教学反思:

1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系。

2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力。另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性。在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。

有理数的乘法的教案篇5

教学目标

1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3。三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4。通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5。本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

重点:

是否能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的`符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

难点:

理解有理数的乘法法则。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1。有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2。两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。

3。基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4。几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。

5。小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6。如果因数是带分数,一般要将它化为假分数,以便于约分。

教学设计示例

有理数的乘法(第一课时)

教学目标

1。使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

2。通过有理数的乘法运算,培养学生的运算能力;

3。通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法法则的理解。

课堂教学过程设计

一、从学生原有认知结构提出问题

1。计算(—2)+(—2)+(—2)。

2。有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3。有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[

4。根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、师生共同研究有理数乘法法则

问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?

解:3×2=6(厘米)①

答:上升了6厘米。

问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?

解:—3×2=—6(厘米)②

答:上升—6厘米(即下降6厘米)。

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数。

这是一条很重要的结论,应用此结论,3×(—2)=?(—3)×(—2)=?(学生答)

把3×(—2)和①式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“6”的相反数“—6”,即3×(—2)=—6。

把(—3)×(—2)和②式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“—6”的相反数“6”,即(—3)×(—2)=6。

此外,(—3)×0=0。

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0。

继而教师强调指出:

“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。

用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。

因此,在进行有理数乘法时,需要时时强调:先定符号后定值。

三、运用举例,变式练习

例某一物体温度每小时上升a度,现在温度是0度。

(1)t小时后温度是多少?

(2)当a,t分别是下列各数时的结果:

①a=3,t=2;②a=—3,t=2;

②a=3,t=—2;④a=—3,t=—2;

教师引导学生检验一下(2)中各结果是否合乎实际。

课堂练习

1。口答:

(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;

(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);

(7)(—6)×0;(8)0×(—6);

2。口答:

(1)1×(—5);(2)(—1)×(—5);(3)+(—5);

(4)—(—5);(5)1×a;(6)(—1)×a。

这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以—1都等于它的相反数。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同时教师强调指出,a可以是正数,也可以是负数或0;—a未必是负数,也可以是正数或0。

3。填空:

(1)1×(—6)=______;(2)1+(—6)=_______;

(3)(—1)×6=________;(4)(—1)+6=______;

(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;

(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。

4。判断下列方程的解是正数还是负数或0:

(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。

四、小结

今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。

五、作业

1。计算:

(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);

(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。

2。填空(用“>”或“

(1)如果a

(2)如果a

(3)如果a>0时,那么a____________2a;

(4)如果a

探究活动

问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“—1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成—1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1)。而7个杯口全部朝下时,7个数的乘积等于—1,这是不可能的。

道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。

有理数的乘法的教案篇6

?编者按】教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

一、 学情分析:

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、 课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

三、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?

学生:

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、 小组探索、归纳法则

教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

3、 运用法则计算,巩固法则。

(1)教师按课本p75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做 p76 练习1(1)(3),教师评析。

(4)教师引导学生做p75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

4、 讨论对比,使学生知识系统化。

有理数乘法

有理数加法

同号

得正

取相同的符号

把绝对值相乘

(-2)(-3)=6

把绝对值相加

(-2)+(-3)=-5

异号

得负

取绝对值大的加数的符号

把绝对值相乘

(-2)3= -6

(-2)+3=1

用较大的绝对值减小的绝对值

任何数与零

得零

得任何数

5、 分层作业,巩固提高。

六、 教学反思:

本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

【点评】:本节课张老师首先创设了一个密切社会生活的问题情景抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的.探索精神和创新能力。

为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到家,并为新知识安家落户。

学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。

本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师教教科书是传统的教书匠的表现,用教科书教才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

会计实习心得体会最新模板相关文章:

墨的一生教案6篇

健康的教案最新6篇

脚弓传球的教案6篇

小食品的安全教案反思6篇

生气汤的教案6篇

幼儿健康领域的教案6篇

大班疫情防控的教案6篇

大班科学《神奇的水》教案6篇

健康的教案6篇

蝉的教案反思优质6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    86841

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。