教案中可以设计模拟情境,以提高学生的实际应用能力,一份详尽的教案能帮助教师有效管理课堂时间,提升效率,下面是骄才站小编为您分享的初一数学有理数的教案5篇,感谢您的参阅。

初一数学有理数的教案篇1
教学目标:
知识能力:
理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:
经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:
通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
会把所给的各数填入它所属于的集合里
教学方法:
问题引导法
学习方法:
自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33
(1)将上面的.数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数
2._______和_________统称为分数
3.__________统称为有理数
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数:、分数:__________;正整数:__________、负整数:__________、正分数:__________、负分数:__________.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.b
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是()
a.0是最小的正整数
b.0是最小的有理数
c.0既不是整数也不是分数
d.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数
(2)零是整数,但不是自然数
(3)分数包括正分数和负分数
(4)正数和负数统称为有理数
(5)一个有理数,它不是整数就是分数
五、总结与反思:
通过本节课的学习,你有什么收获?
六、作业:
必做题:课本14页:1、9题
初一数学有理数的教案篇2
【学习目标】
1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;
2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;
【学习方法】
自主探究与合作交流相结合。
【学习重难点】
重点:能熟练地按照有理数的运算顺序进行混合运算
难点:在正确运算的基础上,适当地应用运算律简化运算
【学习过程】
模块一预习反馈
一、学习准备
1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。
2.有理数的运算定律:__________________________________________________.
3.请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。
《2.11有理数的混合运算》课后作业
9.用符号“>”“
42+32________2×4×3;
(-3)2+12________2×ok3w_ads("s002");
《2.11有理数的混合运算》同步练习
5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的`部分按5%的税率;超过500元不超过20xx元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?
初一数学有理数的教案篇3
学习目标:
1、会进行包括小数或分数的有理数的加减混合运算。
2、熟练地进行有理数加减混合运算,并利用运算律简化运算。
3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。
学习重难点:
1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
学习过程:
任务一:温故知新
1、完成课本44页习题2、7的第1、2题,写在作业本上。
2、6有理数的加减混合运算》课时练习
一、选择题(共10题)
1、下列关于有理数的加法说法错误的是( )
a、同号两数相加,取相同的符号,并把绝对值相加
b、异号两数相加,绝对值相等时和为0
c、互为相反数的两数相加得0
d、绝对值不等时,取绝对值较小的数的符号作为和的符号
答案:d
解析:解答:d选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的'符号作为和的符号
分析:考查有理数的的加法法则
《2、6有理数的加减混合运算》同步练习
2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?
3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
这10名学生的总体重为多少?10名学生的平均体重为多少?
初一数学有理数的教案篇4
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。
采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。
教学过程
?数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的`主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。
(二)探索规律,得出法则:
课件演示:(设置六个探究活动,以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为正,向右为负)让学生体会两个数相加的规律。
(1)同向情况:
1.情景
探究1:一条狗先向右运动5米,再向右运动3米,那么两次运动后的总结果是什么?
探究2:一条狗先向左运动5米,再向左运动3米,那么两次运动后的总结果是什么?
2.探究问题:有理数两个负数相加的和该怎么确定符号?怎么确定绝对值?(学生主动思考,展开讨论)
3.猜一猜,说一说(分组概括两个负数的加法法则):
①两数相加,取相同的符号,并把绝对值相加;
②负数加负数,取负号,并把绝对值相加。
4.例:(-4)+(-5)
(2)异向情况:
1.情景:
探究3:一条狗先向右运动5米,再向左运动3米,那么两次运动后的总结果是什么?
初一数学有理数的教案篇5
《1.2有理数》教学设计
?学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
?学习重点】:正确理解有理数的概念
?学习难点】:正确理解分类的标准和按照一定标准分类
《1.2.1有理数》同步练习含答案
5.对-3.14,下面说法正确的是(b)
a.是负数,不是分数
b.是负数,也是分数
c.是分数,不是有理数
d.不是分数,是有理数
《1.2有理数》同步练习含答案解析
8.如果a与1互为相反数,则|a|=( )
a.2 b.﹣2 c.1 d.﹣1
?考点】绝对值;相反数.
?分析】根据互为相反数的定义,知a=﹣1,从而求解.
互为相反数的`定义:只有符号不同的两个数叫互为相反数.
?解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选c.
?点评】此题主要是考查了相反数的概念和绝对值的性质.
9.若|1﹣a|=a﹣1,则a的取值范围是( )
a.a>1 b.a≥1 c.a
?考点】绝对值.
?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.
?解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选b.
?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.
会计实习心得体会最新模板相关文章: